
Models & Metaphors

Jörg Cassens

Medieninformatik II
Contextual Design of Interactive Systems

SoSe 2016

1 Models

Models in Human-Computer Interaction

• Model of a system describes how it works

– its constituent parts and how they work together to do what the system does

• We are here concerned with three models:

– The system model (sometimes called implementation model) is how the system actually works.

– The interface model (or manifest model) is the model that the system presents to the user.

– The user model (or conceptual model) is how the user thinks the system works.

• There are more models

– The model the developers have about how they think the user model is like

– The model the system has about the user (inscribed, in terms of Actor Network Theory)

System Model

• Pixel editing vs. structured graphics

– pixel based as in Gimp, Photoshop

– vector based as in Inkscape, Visio

• Text file as single string vs. list of lines

– End of line as a normal character, like in Emacs

– End of line as a special character, like in vi

• Asset Management system

– List of assets in a flat file

– Records of assets in a database

1



Interface Model

• Help system

– as a binder

– as a paper clip

• Discussion spaces

– as a forum

∗ threaded

∗ linear

– as a wiki

• On a more general level: learning management systems

– among peers (kitchen party)

– with leaders (lectures)

Interface models can be built on different levels (activity design, information design, interaction design) and
should connect to existing knowledge (metaphors)

Interface Model Hides System Model

• The interface model should be:

– Simple

– Appropriate: reflect user’s model of the task (learned from task analysis)

– Well-communicated

– Usable

∗ Efficient

∗ Effective

∗ Satisfying

• Implementation model does not have to be exposed

– Text editor can store list of lines, expose a continuous text

– A cell phone is not a wired phone, still it acts like one – no need to show things like handover
between base stations

– The interface model should closely reflect the user’s model of the actual task

User Model

• Electricity as water

– Electricity moves through wires like water through pipes

– Plug it in, use the gadget (water the flowers)

• Thermostat as a valve

– A thermostat needs to be opened fully to get as much heat (water) out as quickly as possible

User Models may be Wrong

• Sometimes harmless

– Electricity as water

∗ The power cord is no water hose, electrons don’t move fast because of “electrical friction”

• Sometimes misleading

– Thermostat as a valve

∗ What is the fastest way to heat up a room? Fully opening the thermostat, like a valve?

∗ A thermostat is basically an on/off switch: full power till warm enough

2



• Ignorant user?

– The heater in a car actually much more like a valve

– A dimmer is working as a thermostat: set it to the desired lighting conditions

– Problem: the thermostat does not effectively communicate its model to the user, in particular, there
is not enough feedback

Interaction Styles

• We look at the following Interaction Styles

– Command language/command line

– Menus & forms

– Direct manipulation

∗ Touch and Mouse

• Also interesting, but outside the scope today

– Other forms of graphical interaction

– 3D-Gestures

– Natural Language Interfaces

– Explicit vs. implicit interaction

– Behavioural Interfaces

Command Line Interface

• User types in commands in an artificial language

– Unix shell (ls -l *.java)

– Search engine query language (AND, OR)

– SQL (SELECT FROM Book WHERE price > 100.)

– SPARQL (SELECT ?name ?email WHERE {?person a foaf:Person. ?person foaf:name
?name. ?person foaf:mbox ?email.})

• Command syntax is important

• Powerful tool with a steep learning curve – find all .tex files that mention the word foo in a given subtree
and replace those occurrences with bar

• When designing a command language, the key problem is the syntax

• Task analysis drives the choice of commands, the names you give them, the parameters they have, and
the syntax for fitting them together

Menus & Forms

• User is prompted to choose from menus and fill in forms

– web sites “before Web 2.0”

– dialog boxes

• Navigation structure is important

– Wizard: linear sequence of forms

• The navigation structure is the important design problem for menu/form interfaces

• Task analysis tells you what choices need to be available, where they should be placed in a menu tree,
and what data types or possible responses need to be available in a form

3



Direct Manipulation

• User interacts with visual representation of data objects (based on Shneiderman, Designing the User
Interface, 2004):

– Continuous visual representation

∗ Verbal or iconic

– Physical actions or labeled button presses

∗ most direct kind of action, analog to real world interaction

∗ not everything can be easily mapped – convert a text to bold – so “command actions” are allo-
wed

– Rapid, incremental, reversible, immediately visible effects

∗ within 100ms (why?)

∗ drag a bit, see the change

∗ physical or logical

Direct Manipulation II

• Examples

– Files and folders on a desktop

– Scrollbar

– Dragging to resize a rectangle

– Selecting text

• Visual representation and physical interaction are important

• It is powerful since it exploits perceptual and motor skills of the human user

• Some say it depends less on linguistic skills than command or menu/form interfaces

– Only partly true and for a limited understanding of language

Touch vs. Mouse

• While the underlying metaphor does still work, differences between mouse and touch need to be consi-
dered

• For touch-based devices, we need to look at

– Size of elements

∗ “Even bigger”

– Interaction option

∗ There is no mouseover

– New “natural” (cultural?) patterns

∗ Swipe, pinch to zoom

• We still have objects to interact with, what about

– 3D-Gestures

– Speech Interfaces

– Implicit Interaction

• Direct Manipulation has served us well, but we need to move on

4



Comparison of Interaction Styles

• Knowledge in the head vs. world

– CLI needs practice, training, references, manuals

– M&F put much more information into the world

– DM has information from affordances and constraints of metaphor

• Error messages regarding the interaction itself

– DM rarely needs them – try to drag a scroll bar too far

• Efficiency

– CLI good for experts

– M&F demand good shortcuts

– DM if appropriate for task, but mis-using can be labor intensive

• User experience

– CLI best for experts

– M&F, DM better for novices, infrequent users

Comparison of Interaction Styles II

• Synchrony

– CLI synchronous, M&F (user types, system does)

– DM asynchronous, user can point anywhere, do anything

• Programming difficulty

– CLI are easy, parsing rigid texts well understood

– M&F, DM with substantial toolkit support

• Accessibility

– CLI, M&F easier since both are text based

– DM much harder

2 Direct Manipulation Cues

Direct Manipulation Cues

• What is the language in which a system communicates its model to the user?

• What cues rely the users on to learn the model – the parts that make up the interface, and how they work
together?

• Donald Norman, The Design of Everyday Things (1988), identifies a number of cues

– Affordances

– Constraints

– Natural mapping

– Visibility

– Feedback

• Since DM interfaces intend to be a visual metaphor, we look at how these apply to UI

5



Affordances

• Perceived and actual properties of a thing that determine how the thing could be used
– Chair is for sitting
– Knob is for turning
– Button is for pushing
– Listbox is for selection
– Scrollbar is for continuous scrolling or panning

• Perceived vs. actual
– A paper-mache chair still has a perceived affordance for sitting
– A pole has no perceived affordance for sitting, but you can sit on it (albeit uncomfortably)

• The DM UI should agree on perceived and actual affordances

Constraints I

• Graphical screen layout relies greatly on conventional interpretations of the symbols and placement

• Different types of constraints:
– Physical constraints are closely related to real affordances
∗ it is not possible to move the cursor outside the screen
∗ Restricting the cursor to exist only in screen locations where its position is meaningful

– Logical constraints use reasoning to determine the alternatives
∗ If we ask the user to click on five locations and only four are immediately visible, the person

knows, logically, that there is one location off the screen
∗ It is how the user knows to scroll down and see the rest of the page
∗ Logical constraints go hand-in-hand with a good conceptual model.

Constraints II

• Different types of constraints (contd):
– Cultural constraints are conventions shared by a cultural group
∗ That the graphic on the right-hand side of a display is a “scroll bar” and that one should move

the cursor to it, hold down a mouse button, and “drag” it downward in order to see objects
located below the current visible set is a cultural, learned convention

∗ The choice of action is arbitrary: there is nothing inherent in the devices or design that requires
the system to act in this way

∗ “Arbitrary” does not mean that any random depiction would do equally well: the current choice
is an intelligent fit to human cognition, but there are alternative methods that work equally well.

Natural Mapping

• Physical arrangement of controls should match arrangement of function

• Best mapping is direct, but natural mappings do not have to be direct
– Light switches
∗ If the switches are arranged in the same fashion as the lights, it is much easier to learn which

switch controls which light
– Stove burners
∗ Most stoves have four plates in a square and four controls in a row

– Car turn signals
∗ Up and down instead of left and right, but synchronous to turning wheel

– DJ audio mixer
∗ between turntable

• What is a direct mapping anyway?
– Rudder of a boat vs. steering wheel of a car

6



Visibility

• Relevant parts of system should be visible

• If the user cannot see an important control, they would have to

– guess that it exists, and

– guess where it is

• Not usually a problem in the real world

– Look at a bike or a pair of scissors

– Hiding often takes effort (hidden doors)

– Design can come in the way

• But takes extra effort in computer interfaces

– Mouse clicks can be interpreted in arbitrary ways

Feedback

• Feedback: what the system does when you perform an action

• When the user successfully makes a part work, it should appear to respond

• Actions should have immediate, visible effects

– Push buttons depress and release

– Scrollbars move

– Drag & drop following the cursor

• Kinds of feedback

– Visual – see above

– Audio – clicks made by keyboard (or, artificially, touch screens)

– Haptic – vibrating touch screens, force feedback 3D-mouse

3 Errors

Anticipating Errors

• Users will make errors

• It is important to take possible errors into account, when designing the system

• Usability guidelines

– Nielsen: Usability Heuristics

∗ Avoid errors

∗ Constructive feedback

– Shneiderman: Golden rules

∗ Avoid errors

∗ Easy undo

• There are different kind of errors

– Knowing them makes it easier to recognize the problem

7



Modeling Human Error

• Description error

• Capture error

• Mode error

cc by-nc-sa freekz0r at flickr

Description Error

• Intended action is replaced by another action with many features in common

• The user intends to do one action, but accidentally substitutes the other

– Pouring orange juice into your cereal

– Putting the wrong lid on a bowl

– Throwing shirt into waste paper instead of hamper

• Mitigation: Avoid actions with very similar descriptions

– Long rows of identical switches

– Adjacent menu items that look similar

Capture Error

• A sequence of actions is replaced by another sequence that starts the same way

• The user starts executing one sequence of actions, but then veers off into another (often more familiar)
sequence

– Leave your house and find yourself walking to school instead of where you meant to go

– Vi :wq command

• Picture for this: you have developed a mental groove from executing the same sequence of actions repea-
tedly, and this groove tends to capture other sequences that start the same way

• Mitigation: Avoid habitual action sequences with common prefixes

Mode Error

• Modes: states in which actions have different meanings

– Vi’s insert mode vs. command mode

– Caps lock

– Drawing palette

• Mode errors occur when the user tries to invoke an action that doesn’t have the desired effect in the
current mode

• Mitigation: Avoid modes ,

8



Avoiding Mode Errors

• Eliminate modes

• Visibility of mode

– much harder problem for mode status than it is for affordances

– the user isn’t actively looking for the mode, like they might actively look for a control

– mode status indicators must be visible in the user’s locus of attention → caps lock light does not
work well

• Spring-loaded mode

– the user has to do something active to stay in the alternate mode, essentially eliminating the chance
that they’ll forget what mode they’re in

– Shift key, drag-and-drop

Avoiding Mode Errors II

• Temporary modes

– in many graphics programs, when you select a drawing object like a rectangle or line from the
palette, that drawing mode is active only for one mouse gesture

– afterwards, the mode automatically reverts to ordinary pointer selection

• Disjoint action sets in different modes

– mode errors may still occur, when the user invokes an action in the wrong mode, but the action can
simply be ignored

4 Metaphors

Metaphors

• Another way to address the model problem

• Advantage: borrowing a conceptual model the user already has experience with.

• Can convey a lot of knowledge about the interface model all at once

• Examples

– Desktop

– Trashcan

• Each of these metaphors carries along with it a lot of knowledge about the parts

– purposes

– interactions

• The user can draw on these to make guesses about how the interface will work.

Levels

• Metaphors can be used on different levels

– A metaphor for how the system works (Activity design in Scenario-Based Development)

∗ A discussion forum like a lecture or like the kitchen at a party

– A metaphor for how information is displayed (Information Design)

∗ Free space left on hard disk as a partially full bar

– A metaphor for the interaction offers (Interaction Design)

∗ Dragging a file into the waste paper basket

9



Dangers of Metaphors I

• Hard to find

– Particularly with real-world objects

– Basic rule for metaphors is: use it if you have one, but don’t stretch for one if you don’t

• Deceptive

– Leading users to infer behavior that your interface doesn’t provide

– Looks like a book, but can I write in the margins?

• Constraining

– Strict adherence to the desktop metaphor wouldn’t scale, because documents would always be full-
size like they are in the real world.

Dangers of Metaphors II

• Breaking the metaphor

– Your interface is presumably more capable than the real-world object, so at some point you have to
break the metaphor

– Nobody would use a word processor if really behaved like a typewriter

– Features like automatic word-wrapping break the typewriter metaphor, by creating a distinction
between hard carriage returns and soft returns

• Use of a metaphor doesn’t excuse bad communication of the model

– If it looks like a book, but you don’t show how to open it, the metaphor does not help

5 Norman’s Gulfs

Stages of Interaction

• There are lots of places where interaction between human and machine can go wrong

– Perception

– Cognition

– Action

• Stages of action proposed by David Norman (1986)

• Two gaps

– Gulf of Evaluation: the “cognitive distance” between what is displayed and the user’s mental re-
presentation

– Gulf of Execution: distance between the user’s goals and the procedures and actions provided to
pursue this goals

Norman’s Gulfs

Gulf of Evaluation and of Execution

Source: Rosson & Carroll, 2002

10



Gulf of Evaluation

Information-Design

• The objects and actions possible in a system are represented and arranged in a way that facilitates
perception and understanding

• Includes the design of

– Application screens

– Web pages

– Menus

– Dialogs

– Icons

• Other modalities

– Sound

∗ Speech synthesis

– Tactile

∗ Force feedback game controls

– Visual

∗ 3D-displays (geowall)

• Addresses the Gulf of Evaluation

Perception

• Guiding viewers to see the structure in an information display

• Gestalt principles

– Similarity

– Closure

– Area

– Symmetry

– Continuity

– Proximity

• Organization

11



Interpretation

• During interpretation, the content is recognized as input fields for data, choices for presentation, etc.

• Key concepts:
– Familiarity
∗ Connect to existing knowledge

– Realism and abstraction
∗ Realistic – easy to recognize, but maybe too particular?
∗ Abstract – harder to recognize, but maybe more general?

– Recognizing Affordances
∗ Show the user what can be done and where

Making Sense

• Relating the information to what they currently understand about their task

• Evaluating whether and how it addresses their active goals and interests

• Consistency
– Visual design program: fonts, logo, colors

• Visual metaphors
– Is it map? Does it work as a map?

• Information models
– hierarchies, maps

• Dynamic display
– redisplay or animation

Gulf of Execution

Interaction-Design

• Goal: specify the mechanisms for accessing and manipulating task information

• Information design focuses on determining which task objects and actions to show and how to represent
them

• Interaction design tries to make sure that people can do the right things at the right time

• Broad scope:
– Selecting and opening a spreadsheet
– Pressing and holding a mouse button while dragging it
– Specifying a range of cells

• Addresses the Gulf of Execution

12



Task & System Goal

• Task goal

– the task the user really wants to achieve

• System goal

– translate the real world goal into a system goal

– UI-Models/Interaction style

– opportunistic goals

Action plan

• steps needed to achieve a system goal comprise an action plan

• task analysis→ idealized action plan

• Other key concepts:

– mental models

– making actions obvious

Execution

• final phase: execution of plan steps

• articulatory directness: mapping of physical movement with a device to a task’s input requirements

– Mouse, keyboard, trackball, joystick

• Feedback and undo

• optimizing performance

– efficient interaction

– sane defaults

Gulf of Evaluation

13



Helpdesk

+ Medieval Helpdesk

14

https://www.youtube.com/watch?v=pQHX-SjgQvQ

	Models
	Direct Manipulation Cues
	Errors
	Metaphors
	Norman's Gulfs

